publications

2025

  1. ICLR
    Diffusion Generative Modeling for Spatially Resolved Gene Expression Inference from Histology Images
    Sichen Zhu*, Yuchen Zhu*, Molei Tao, and Peng Qiu
    International Conference on Learning Representations (ICLR), 2025
  2. ICLR
    Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups
    Yuchen Zhu*, Tianrong Chen*, Lingkai Kong, Evangelos Theodorou, and Molei Tao
    International Conference on Learning Representations (ICLR), 2025
  3. arXiv
    Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms
    Yinuo Ren*, Haoxuan Chen*, Yuchen Zhu*, Wei Guo*, Yongxin Chen, Grant M Rotskoff, Molei Tao, and Lexing Ying
    ICLR FPI Workshop, 2025
    Long version under review

2024

  1. arXiv
    Plug-and-Play Controllable Generation for Discrete Masked Models
    Wei Guo*, Yuchen Zhu*, Molei Tao, and Yongxin Chen
    Preprint, 2024
  2. arXiv
    Deep Learning Algorithms for Mean Field Optimal Stopping in Finite Space and Discrete Time
    Yuchen Zhu*, Lorenzo Magnino*, and Mathieu Lauriere
    Preprint, 2024
  3. arXiv
    Competitive Reinforcement Learning when Minimax Theorem Does Not Hold: Multi-Objective Markov Games, Multi-Calibration, and Beyond
    Jingchu Gai, Yuchen Zhu, Chuanhao Li, Shuang Qiu, and Zhuoran Yang
    Preprint, 2024
  4. arXiv
    Quantum Generation with Structure Preserving Diffusion Model
    Yuchen Zhu, Tianrong Chen, Evangelos A Theodorou, Xie Chen, and Molei Tao
    Preprint, 2024
  5. arXiv
    A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization
    Yuchen Zhu, Yufeng Zhang, Zhaoran Wang, Zhuoran Yang, and Xiaohong Chen
    Preprint, 2024
  6. ESAIM
    Deep Learning for Mean Field Optimal Transport
    Sebastian Baudelet, Brieuc Frenais, Mathieu Lauriere, Amal Machtalay, and Yuchen Zhu
    ESAIM: PROCEEDINGS AND SURVEYS 77, 2024