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Introduction

Generative modeling of data on manifolds is an important task with wide applications in domains

such as biology, robotics, physics, atmosphere, ocean sciences, etc. Diffusion models in flat spaces

typically need nontrivial adaptations to succeed

In this work, inspired by recent progress in momentum-based optimization (Tao and Ohsawa, 2020)

and sampling (Kong and Tao, 2024) on Lie groups, we develop a highly scalable and effective

generative model for data on these manifolds, named Trivialized DiffusionModel (TDM).

Introduce TDM, using a trivialization technique to achieve a dramatically improved generation

quality of Lie group data.

Leverage a nontrivial Operator Splitting Integrator for accurate and efficient inference, further

reducing generation errors.

Achieve much better numerical results in benchmarks such as protein/RNA torsion angle

generation. Present the first results on generating U(n) and SO(n) for n > 3.

Challenges of Manifold Diffusion Models

In Euclidean space, Diffusion models are{
dXt = −Xtdt +

√
2dWt forward equation

dYt = Yt + 2s(Yt, T − t)dt +
√

2dBt backward equation

A naive extension to manifold G would lead to undesired consequences,

Requirement of exact implementation of BM on the manifold→ Need approximations!

Score function s(x, t) ≈ ∇ log p(x, t) ∈ TxG→ Increased learning difficulty!

Generative backward process is a manifold SDE→ Hard to integrate!

Can we do better on manifolds with special structures?

Background on Lie Groups

What are Lie groups? A Lie group G is a differentiable manifoldwith an additional group structure

(i.e., a way to define how two points multiply).

Special Orthogonal Group SO(n) = {R ∈ Rn×n | R>R = RR> = I, det R = 1}
Unitary Group SU(n) = {U ∈ Cn×n | UHU = UUH = I}
Special Euclidean Group SE(n) = Rn o SO(n)

Prominent applications include.

Protein backbones represented by relative orientations between rigid functioning groups

(roughly speaking)→ Special Euclidean group SE(3)
Quantum Circuits basic operations on qubits→ Unitary group U(N)
...

Figure 1. Left: Torsion angles. Middle: Protein backbone structures. Right: visualization of 2D Torus

Trivialized Diffusion Model

Kong and Tao (2024) shows that (∗) converges to the Gibbs distribution Z−1e−(U(g)+‖ξ‖2)dgdξ

ġ = gξ, dξ = −γξdt− TgLg−1(∇U(g))dt +
√

2γdW g (∗)

where g(t) ∈ G. This serves as Forward dynamics of TDM.

This mimics the kinetic Langevin on Euclidean space,

q̇ = p, dp = −γpdt−∇U(q)dt +
√

2γdW

Except for the key differences: use of trivialization technique!

instead of usual momentum variable ġ = p, leveraging the group structure, use trivialized

momentum ξ = g−1ġ ⇔ angular momentum instead of linear momentum!

linear momentum ġ ∈ GgtG↔ A changing space dependent on gt
trivialized momentum ξ ∈ g = TeG↔ A fixed space!

Moreover, TeG ∼= Rd → ξ is Euclidean at any time → only require Euclidean BM noise!

Relevance to Diffusion Model?

g is the data variable← manifold valued

ξ is ab auxiliary variable← Euclidean valued, introduced for algorithmic benefit

Picking U(g) = 0 gives a forward noising dynamic,

ġf = gfξf , dξf = −γξfdt +
√

2γdW g (F)

(F) converges to U ×N exponentially fast← U on G implementable with random linear algebra,

N (0, I) simple since g ∼= Rd

We shown that (F) indeed has a time reversal that serves as the backward dynamic (B)

ġb = −gbξb, dξb = γξbdt + 2γs(gb, ξb, T − t)dt +
√

2γdBg (B)

which satisfies (gb(t), ξb(t))
d= (gf (T − t), ξf (T − t))

Only requires s(g, ξ, t) = ∇ξ log p(g, ξ, t) ← Euclidean derivative, simple and familiar!

How to do efficient inference of TDM? Operator-Splitting Integrator!

Ag :
{

ġb = −gbξb
dξb = 0 + Aξ :

{
ġb = 0
dξb = γξb + 2γsθ(gb, ξb, T − t)dt +

√
2γdBg

Iteratively integrate Ag and Aξ gives a manifold-preserving, accurate numerical scheme.{
ξn = exp(γh)ξn−1 + 2(exp(γh)− 1)sn−1 + εn−1
gn = gn−1 expm(−hξn)

Numerical Results

Checkerboard pattern: data distribution corresponds to T-valued uniform distribution on the

periodic, checkerboard-like region

Pacman maze: data distribution corresponds to T-valued uniform distribution on the blue pixels

(the wall in the classic Pacman game map).

Figure 2. Left: Generated checkerboard pattern of different resolutions. Right: Learnt Pacman maze distribution

Torison angles in RNA and Proteins The data distribution corresponds to macro-molecules rep-

resented by torsion angles (Tk-valued), which are 2D or 7D, compiled in Huang et al. (2022).

Evaluated through NLL and visualization.

Model General (2D) Glycine (2D) Proline (2D) Pre-Pro (2D) RNA (7D)

Dataset size 138208 13283 7634 6910 9478

RDM 1.04± 0.012 1.97± 0.012 0.12± 0.011 1.24± 0.004 −3.70± 0.592
RFM 1.01± 0.025 1.90± 0.055 0.15± 0.027 1.18± 0.055 −5.20± 0.067

TDM 0.69± 0.14 1.04± 0.27 −0.60± 0.15 0.52± 0.10 −6.86± 0.46

Evolution Operators of Quantum Systems The data distribution corresponds to U(N )-valued time-
evolution operators of form eitH, whereH is the Hamiltonian for quantum oscillators,H = ∆h−Vh,

∆h is the discretized Laplacian and Vh(x) = 1
2ω2|x− x0|2 is a random potential function. Newly

compiled in (Zhu et al., 2024).
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