Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces

encoders, fewer modules, and more

parameter efficiency

diffusion generation

Diffuse Everything introduce new

design space for multimodal

Kevin Rojas*¹ Yuchen Zhu*¹ Sichen Zhu¹ Felix X.-F. Ye² Molei Tao¹

¹Georgia Institute of Technology ²SUNY Albany

CODE

POST

TL;DR Representation unification is challenging and expensive. Good encoders are hard to train. Decoding capped generation accuracy. Bad decoders creates artifacts. Multimodal Generation with Diffuse Everything Diffuse Everything have minimum

Motivation

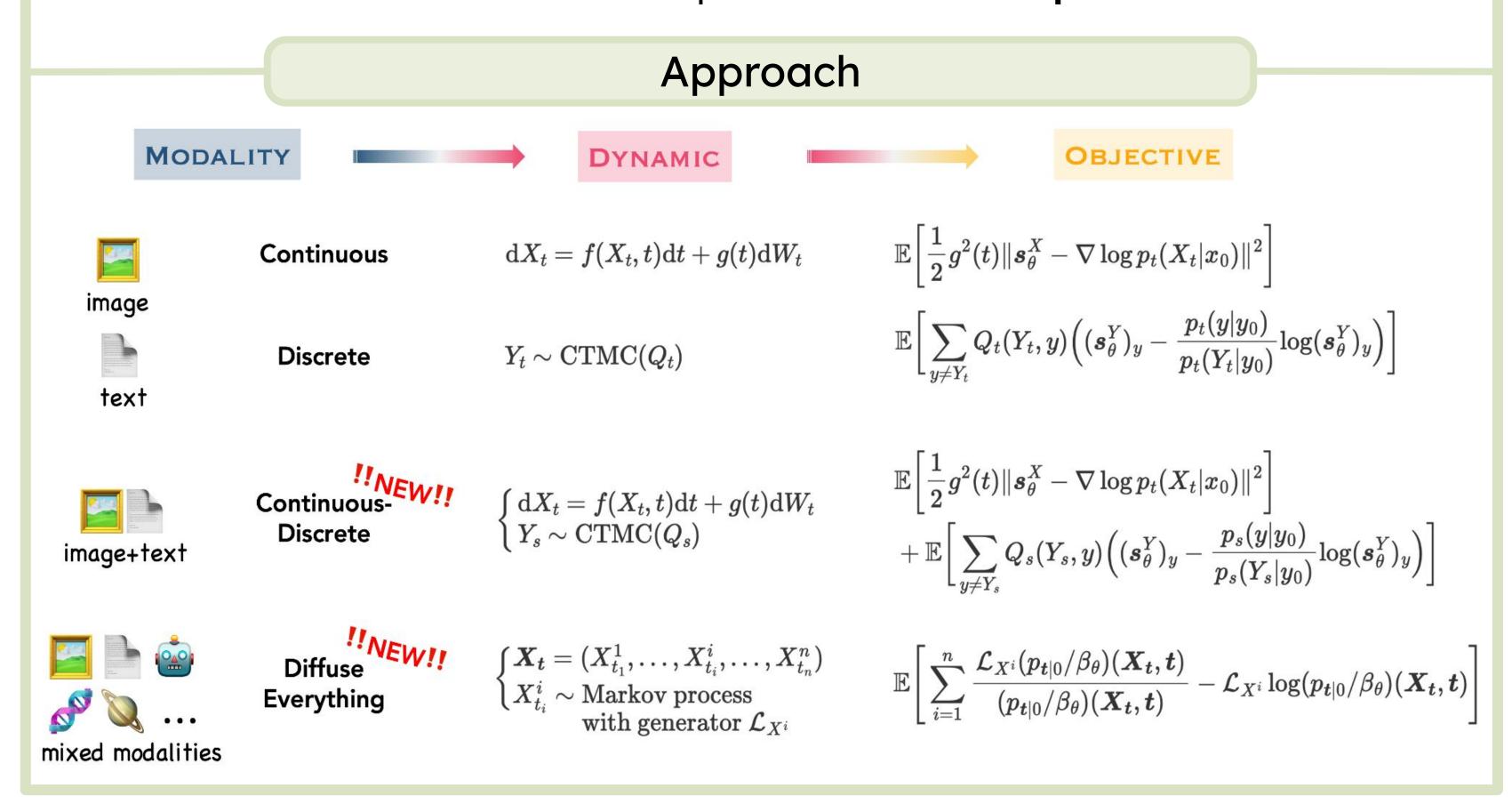
- > Joint generation of multimodal data is **IMPORTANT!**
- > Diffusion models are **SOTA** for many types of unimodal data, with fantastic conditional generation capability.
- > Good tokenizers and VAEs are CHALLENGING to train.

Goal

Develop **NEW** diffusion models to generate multimodal data in their <u>native state space</u>, **bypassing** the need for tokenizers/VAEs/encoders.

Key Findings

- 1. Multimodal diffusions can be built by combining unimodal diffusions and be trained by learning scores of joint distribution.
- 2. Training multimodal diffusion models is **provably** as simple as jointly optimizing **sum** of unimodal diffusion model losses.
- 3. Decoupled time enables any-to-any generation in one model, and a new guidance scheme named noisy guidance.
- 4. Multimodal diffusion on native state spaces are much more parameter-efficient.



Methodology

Multimodal Gen. with Denoising Markov Models

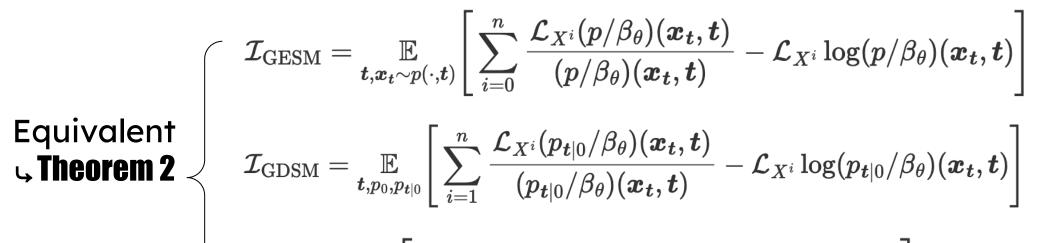
Generative modeling with dynamic:

 $m{X_t} = (X_{t^1}^1, \dots, X_{t^i}^i, \dots, X_{t^n}^n), \, 0 \leq t^1, \dots, t^n \leq T$ $(X_0^1,\ldots,X_0^i,\ldots,X_0^n) \sim p_{\mathrm{data}}(oldsymbol{x})$

... requires only learning score of 4 Theorem 1

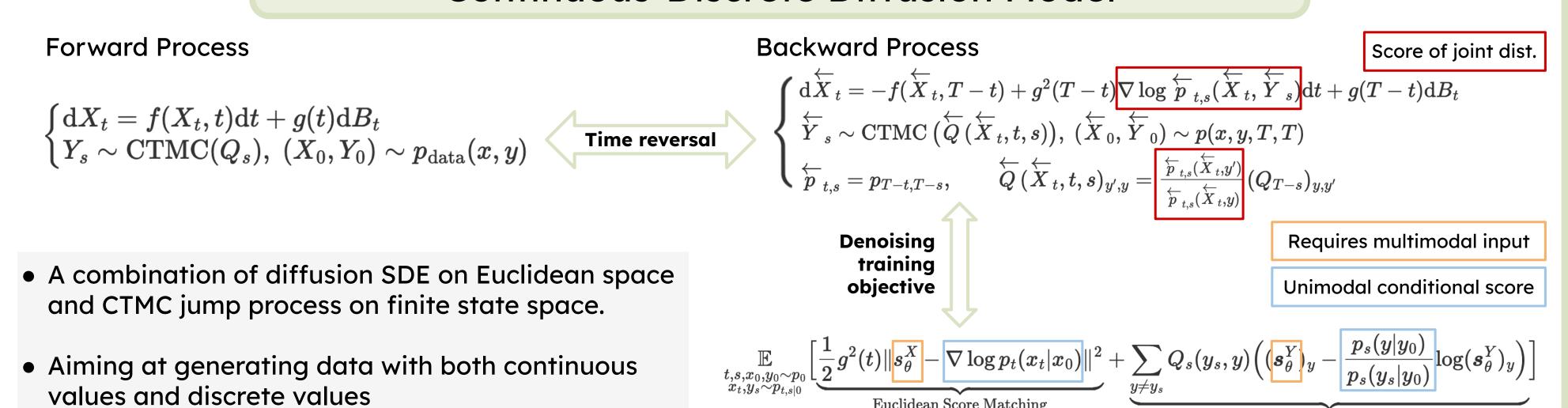
 $p(oldsymbol{x_t},oldsymbol{t}) = \mathbb{P}(X^1_{t^1} = (oldsymbol{x_t})_1,\dots,X^n_{t^n} = (oldsymbol{x_t})_n)$

Training with Generalized Score Matching



 $\mathcal{I}_{ ext{GISM}} = \mathop{\mathbb{E}}_{oldsymbol{t},p_{oldsymbol{t}}} \left[\sum_{i=1}^n rac{\mathcal{L}_{X^i}^*eta_{ heta}(oldsymbol{x_t,t})}{eta_{ heta}(oldsymbol{x_t,t})} - \mathcal{L}_{X^i}^*\log(eta_{ heta})(oldsymbol{x_t,t})
ight]$

Continuous-Discrete Diffusion Model



Decoupled Time Design

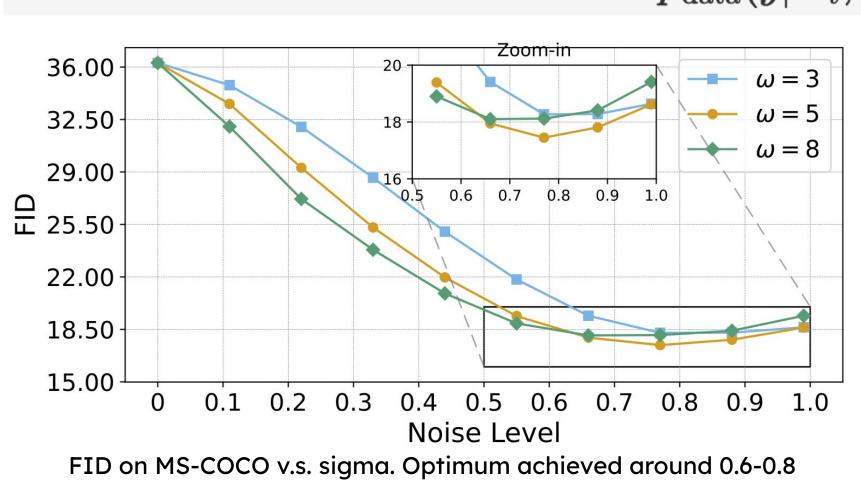
Decoupled time design means:

Sampling discrete data only

- ☐ Each modality is noised and denoised at independent pace
- ☐ Requires learning denoiser/score at more scenarios

Benefit 1 - Flexible any-to-any generation

- ullet Given a partially noisy text Y_s , simulating only the X -backward dynamics samples from $\,p_{
 m data}(x|Y_s,s)$
- ullet Given a partially noisy image X_t , simulating the Y-backward dynamics samples from $\,p_{
 m data}(y|X_t,t)$



1 : sample 🌌 clean data : sample 🖿 given 🧧 ે : sample 🗎 4 : sample 📮 given 🖿 (1)+(2),(3)+(4),(5),(6),(7): score ${m {\mathcal P}}$ + score ${m {\mathcal Q}}$ ightarrowclassifier-free guidance score \mathcal{P} + score \mathcal{W} \rightarrow noisy guidance !!NEW!!

Benefit 2 – Better guidance scheme than CFG

- Noisy guidance: guiding with a partial corrupted conditional model
- Achieving better diversity-quality trade-off
- Recover CFG when s = 0, sigma = T

Noisy Guidance

 $\omega s_{ heta}(x_t,y_s,t,s) + (1-\omega) s_{ heta}(x_t,y_{\sigma},t,\sigma)$

Jointly sample continuous and discrete data

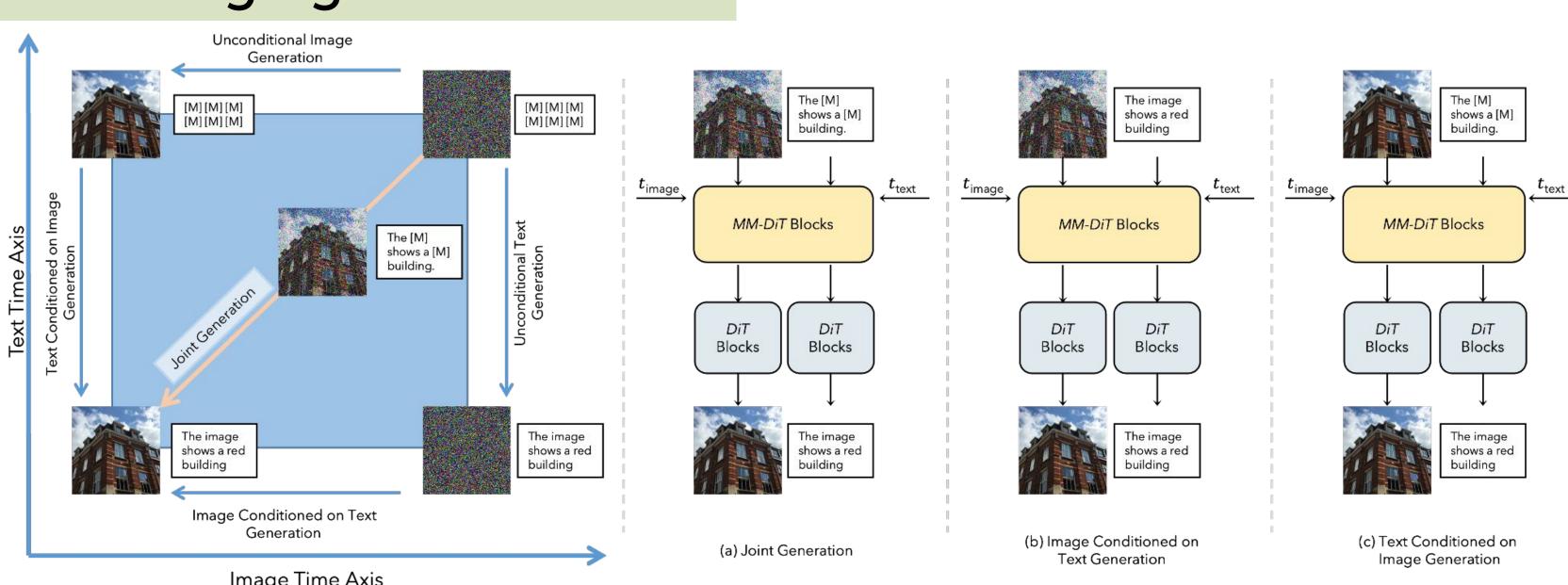
Inference Algorithms

12: return x_0

Sample continuous data only

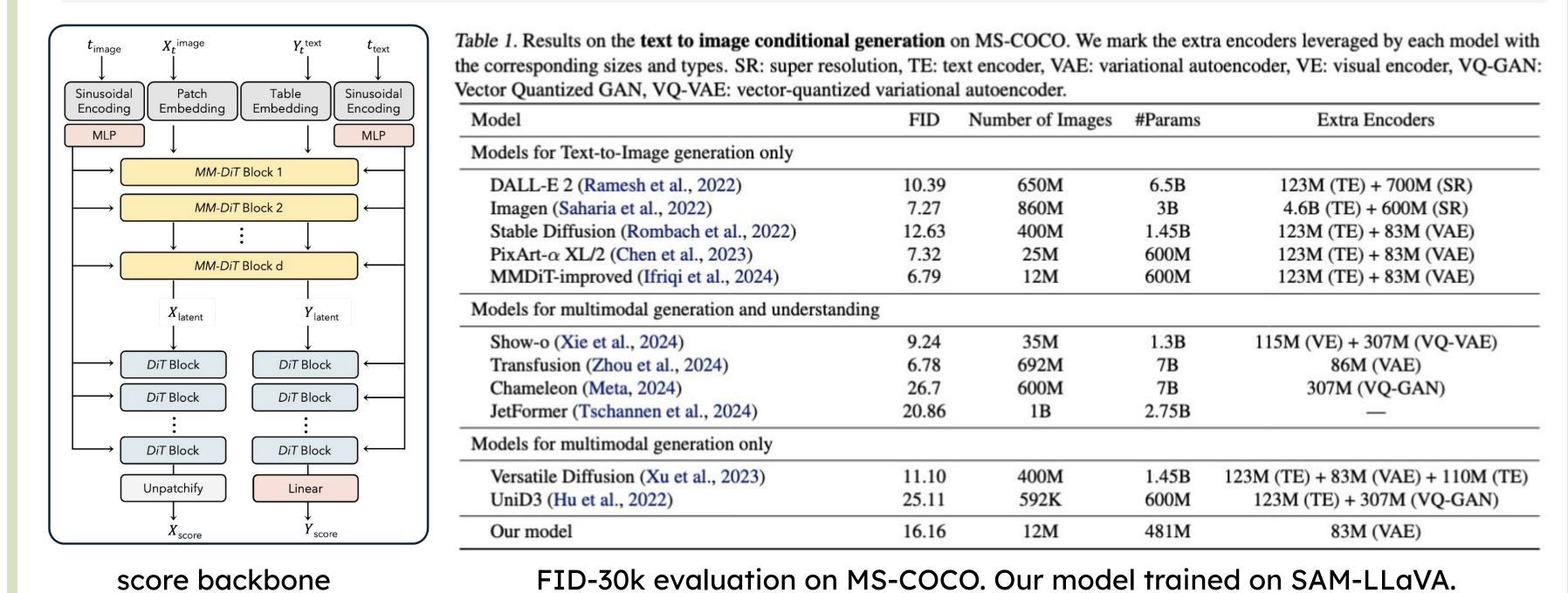
Algorithm 3 Discrete Sampler with τ -leaping	Algorithm 4 Continuous Sampler with Heun's method	Algorithm 5 Multimodal Sampler with τ -leaping and Heun's Method				
Require: N : Number of steps, ω : Guidance Strength 1: $[a,b]$: Guidance Interval, model: $s_{\theta}(x_{t},y_{s},t,s,\omega)$ 2: x : a clean image condition Ensure: $y_{0} \sim p_{\text{data}}(\cdot x)$ 3: $y_{t} \leftarrow [\mathbf{M}, \dots, \mathbf{M}]$ 4: for t in times do 5: $\omega_{t} = \omega$ if $t \in [a,b]$ else 1. 6: $s_{\theta}^{x}, s_{\theta}^{y} \leftarrow s_{\theta}(x,y_{t},0,t,\omega_{t})$ 7: $y_{t} \leftarrow \tau$ -leaping $(s_{\theta}^{y},y_{t},t, \mathrm{d}t)$ 8: end for 9: return y_{0}	Require: N : Number of steps, ω : Guidance Strength 1: $[a,b]$: Guidance Interval, model: $s_{\theta}(x_t,y_s,t,s,\omega)$ 2: y : A clean text condition Ensure: $x_0 \sim p_{\text{data}}(\cdot y)$ 3: $x_t \leftarrow \mathcal{N}(0,I)$ 4: for t in times do 5: $\omega_t = \omega$ if $t \in [a,b]$ else 1. 6: $s_{\theta}^x, s_{\theta}^y \leftarrow s_{\theta}(x_t,y,t,0,\omega_t)$ 7: $v_{\text{old}} = f(x_t,t) - \frac{1}{2}g^2(t)s_{\theta}^x$ 8: $\hat{x} \leftarrow x_t + v_{\text{old}}dt$, $\hat{s}_{\theta}^x, \hat{s}_{\theta}^y \leftarrow s_{\theta}(\hat{x},y,t+dt,0,\omega_t)$ 9: $v_{\text{new}} = f(\hat{x}_t,t) - \frac{1}{2}g^2(t)\hat{s}_{\theta}^x$ 10: $x_t \leftarrow x_t + \frac{1}{2} \cdot (v_{\text{old}} + v_{\text{new}})dt$ 11: end for	Require: N : Number of steps, ω : Guidance Strength, 1: $[a,b]$: Guidance Interval, 2: model: $s_{\theta}(x_t, y_s, t, s, \omega)$ Ensure: $x_0, y_0 \sim p_{\text{data}}$ 3: $x_t \leftarrow \mathcal{N}(0, I), y_t \leftarrow [\mathbf{M}, \dots, \mathbf{M}]$ 4: for t in times do 5: $\omega_t = \omega$ if $t \in [a,b]$ else 1. 6: $s_{\theta}^x, s_{\theta}^y \leftarrow s_{\theta}(x_t, y_t, t, t, \omega_t), v_{\text{old}} = f(x_t, t) - \frac{1}{2}g^2(t)s_{\theta}^x$ 7: $\hat{x} \leftarrow x_t + v_{\text{old}}dt$ 8: $\hat{s}_{\theta}^x, \hat{s}_{\theta}^y \leftarrow s_{\theta}(\hat{x}, y_t, t + dt, t, \omega_t), v_{\text{new}} = f(\hat{x}_t, t) - \frac{1}{2}g^2(t)\hat{s}_{\theta}^x$ 9: $x_t \leftarrow x_t + \frac{1}{2} \cdot (v_{\text{old}} + v_{\text{new}})dt, y_t \leftarrow \tau$ -leaping $(s_{\theta}^y, y_t, t, dt)$ 10: end for 11: return x_0, y_0				

Text-Image generation



Jointly generate images and its captions, and we..

- Minimally rely on pretrained model (except for one image VAE for dimension reduction). No T5/CLIP/ViT/etc.
- Achieve satisfactory performance while using much smaller model
- Design multi-stage training strategy to aid training of decoupled time



Mixed-type Tabular data Synthesis

Jointly generate tabular data with both categorical values (eg. age) and continuous values (eg. income), and we ...

- Achieve comparable or beat previous SOTA method with a **significantly smaller model**
- Design a new score backbone based on modification of DiT for mixed-type data, which is **effective!**

Table 2. Performance on the Trend metric in percentage (%). Higher values indicate better performance. Best performance in bold. Second best in underline

Methods	#Parameters	Adult	Default	Shoppers	Magic	Beijing	News
GOGGLE (Liu et al., 2023)	~ 5.6M	54.71	78.06	76.10	90.53	54.06	76.81
STaSy (Kim et al., 2022)	$\sim 10.3M$	85.49±0.25	94.04 ± 0.26	91.51 ± 0.15	93.39 ± 0.53	92.00 ± 0.10	96.93±0.04
CoDi (Lee et al., 2023)	$\sim 25.0M$	77.51±0.08	31.59 ± 0.05	82.22 ± 0.11	93.47±0.25	92.93 ± 0.15	88.90 ± 0.01
TabDDPM (Kotelnikov et al., 2023)	$\sim 11.7M$	96.99±0.25	95.11 ± 0.10	93.39 ± 0.16	98.30 ± 0.22	97.20 ± 0.09	86.84±0.11
TABSYN (Zhang et al., 2023)	$\sim 10.7M$	98.46±0.27	97.95 ± 0.12	97.93 ± 0.21	98.94 ± 0.31	97.76±0.28	98.56±0.03
TABSYN (reproduced)	~ 10.7 M	98.29 ± 0.22	$95.25 \pm \scriptstyle{0.51}$	$\overline{97.82}_{\pm 0.14}$	99.16 ±0.16	$94.86{\scriptstyle\pm0.34}$	98.52±0.09
Our model	$\sim 64 K$	98.75±0.09	96.00±1.23	98.24±0.13	98.85±0.42	97.42±0.11	98.57±0.16

Trend is a metric that captures pair-wise column correlation by computing Pearson correlation for numerical columns, contingency similarity for categorical columns, and contingency similarity between bucketed numerical values and categorical values.

Previous model size 10M~25M 100-200X Reduction Ours: 64K

Table 3. Performance on the MLE metric. Higher values in AUC and lower values in RMSE indicate better testing performance. Best performance in **bold**. Second best in underline.

Methods	#Parameters	Adult (AUC↑)	Default (AUC↑)	Shoppers (AUC↑)	Magic (AUC↑)	Beijing (RMSE↓)	News (RMSE↓)
GOGGLE (Liu et al., 2023)	~ 5.6M	.778±0.012	.584±0.005	.658±0.052	.654±0.024	1.090±0.025	.877±0.002
STaSy (Kim et al., 2022)	$\sim 10.3M$.906±0.001	$.752 \pm 0.006$	$.914 \pm 0.005$	$.934 \pm 0.003$	$.656 \pm 0.014$	$.871 \pm 0.002$
CoDi (Lee et al., 2023)	$\sim 25.0M$.871±0.006	$.525 \pm 0.006$	$.865 \pm 0.006$	$.932 \pm 0.003$	$.818 \pm 0.021$	1.21 ± 0.005
TabDDPM (Kotelnikov et al., 2023)	$\sim 11.7M$.907±0.001	$.758 \pm 0.004$	$.918 \pm 0.005$	$.935 \pm 0.003$	$.592 \pm 0.011$	4.86±3.04
TABSYN (Zhang et al., 2023)	$\sim 10.7M$.915 ±0.002	.764±0.004	$.920 \pm 0.005$	$.938 \pm 0.002$	$.582 \pm 0.008$.861±0.027
TABSYN (reproduced)	$\sim 10.7 M$.910±0.001	$.755{\scriptstyle\pm0.004}$.916±0.004	$.939 \pm 0.003$	$\overline{.655} \pm 0.012$.851±0.024
Our model	$\sim 64 \mathrm{K}$.915±0.001	.764±0.002	.924±0.003	.941±0.002	.543 ±0.012	.864±0.021

MLE is the testing accuracy of the classification or regression task on real data after training an XGBoost Classifier or an **XGBoost Regressor on the** synthetic tabular data.