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Target Problem:

= Find practical algorithms for solving Optimal Stopping of Mean-field dynamics
of discrete-time and finite state space

Importance:

= A proxy for solving Multi-agent OS due to law of representative agent
= Applications: option pricing, swarm robotics, etc

Approach:

= [ntroduce extra extended state to signal the decision status of each agent
= Relate Mean-field Optimal Stopping to Mean-field Control to build theory

Results:

= Establish O(1/+/N) approximation error between N-agent MAOS and MFOS

= Propose two algos: Direct Approach and

= Consider two type of policies: synchronous and asynchronous

= synchronous: agent decides based on population distribution (suboptimal in many cases)
= asynchronous agent decides based on current state, time and population
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Deep Learning for Mean Field Optimal Stopping
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We are concerned with finding control « for the cost:
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Mean-field dynamic evolution:

vy(x,0) =0,

(F(v, h))(=,

a) =

Vg(fal):/io@% :F(Vp,pn)

(u(az,O)Jru(m,l)hV ) (1—a)+ (;y (qw 1 — h(z ))))a,

(

\

Va(v) =

Vr(v) = Z(az,a)ES v(z,a)®(z, vx)a,

Va(v) = infren D 4 ayes V(@; @) (@, vx)ah(z) + Vi1t (F(v, b)),

Dynamic Programming Principle:
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L2 error to Mean field distribution
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Setting: Each agent rolls a die and decides whether to stop. If one stops, he
pays the cost of the current number he had. If one is not satisfied, he can reroll
the die (up to 4 time). 25% starts with 1, 25% starts with 2, 50% starts with 5.

Asynchronous: V* = 1.6525, stop when landing on smaller numbers
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Synchronous: V* = 3.25, stop at beginning
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Setting: Each agent is a drone starting randomly somewhere on the grid. For 50
steps, the drone diffuses uniformly to accessible neighboring positions. The goal
is to finally end up with a distribution of drones that matches a given letter (like
a show!). An obstacle shows up in a random position to block the way each time.

Trajectory Snapshots:




