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Abstract

This paper studies minimax optimization problems defined over infinite-dimensional function

classes of overparameterized two-layer neural networks. In particular, we consider the minimax

optimization problem stemming from estimating linear functional equations defined by conditional

expectations, where the objective functions are quadratic in the functional spaces. We address (i)

the convergence of the stochastic gradient descent-ascent algorithm and (ii) the representation

learning of the neural networks. We establish convergence under the mean-field regime by

considering the continuous-time and infinite-width limit of the optimization dynamics. Under

this regime, the stochastic gradient descent-ascent corresponds to a Wasserstein gradient flow

over the space of probability measures defined over the space of neural network parameters. We

prove that the Wasserstein gradient flow converges globally to a stationary point of the minimax

objective at a O(T−1 + α−1) sublinear rate, and additionally finds the solution to the functional
equation when the regularizer of the minimax objective is strongly convex. Here T denotes the
time and α is a scaling parameter of the neural networks. In terms of representation learning,
our results show that the feature representation induced by the neural networks can deviate

from the initial one by a magnitude of mathcalO(α−1), measured in terms of the Wasserstein
distance. Finally, we apply our general results to concrete examples including policy evaluation,

nonparametric instrumental variable regression, and asset pricing.

Functional Conditional Moment Equations and Minimax optimization

Some notations: X ∈ X be a vector that includes all the endogenous variables, Z ∈ Z denote all

the exogenous variables, W ∈ W ⊆ X × Z be a subset of variables that may contain both the

endogenous and exogenous variables, F := {f : W → R} ⊂ L2(W) denote a class of functions
defined on W .

In a functional conditional moment equation problem (Zhu et al., 2024), we aim to find a function

f0 ∈ F that solves the following functional equation involving the conditional distribution of X
given Z over F :

EX|Z
[
Φ(X,Z; f0)

∣∣∣Z = z
]

= 0, ∀z ∈ Z, (1)

where Φ: X × Z × F → R is a known functional. For any function f ∈ F and any z ∈ Z , we
define a error functional δ̄ : Z × F → R as

δ̄(z; f ) := EX|Z
[
Φ(X,Z; f )

∣∣Z = z
]
, ∀f ∈ F , z ∈ Z. (2)

To solve the functional conditional moment equation, we aim to solve the following regularized

functional minimization problem,

min
f∈F

J(f ) = ED
[
1/2 · δ̄(z; f )2 + λΨ(X,Z; f )

]
where for any given (x, z) ∈ X × Z , Ψ(x, z; f) : F → R+ is a convex functional of f that maps
each function f to a scalar. Moreover, Ψ satisfies

Ψ(x, z; 0) = 0, Ψ(x, z; f ) ≥ 0, ∀f ∈ F , (3)

δΨ(x, z; af1 + bf2)
δf

= a · δΨ(x, z; f1)
δf

+ b · δΨ(x, z; f2)
δf

, ∀f1, f2 ∈ F , a, b ∈ R. (4)

Note that we can turn the functional optimization problem into solving the following minimax

optimization problem by finding the saddle point of functional L(f, g) defined below,

min
f

max
g

L(f, g) = ED
[
g(Z) · Φ(X,Z; f ) − 1/2 · g(Z)2 + λΨ(X,Z; f )

]
. (5)

Applications of Functional Conditional Moment Equations

Policy EvaluationWe consider a Markov decision process given by (S,A,P , r, γ), where S ⊆ Rd is
the state space,A is the action space, P : S ×A → P(S) is the transition kernel, r : S ×A → [0, 1]
is the reward function, γ ∈ (0, 1) is the discount factor. Given a policy π : S → P(A), we aim to
estimate value function V π : S → R, which satisfies the Bellman equation,

Es′|s
[
r(s, a) − V π(s) + γ · V π(s′)

∣∣∣ s] = 0. (6)

(6) is a special case of the functional conditional moment equation in (1) by setting the exogenous

variable Z to be the current state s, the endogenous variable X to be the next state s′ and
the function to be estimated f : S → R to be defined on the state space S . Φ(X,Z; f) =
r + γ · f (X) − f (Z).

Asset Pricing Asset pricing refers to the process of determining the fair value of financial assets.

Consider the Consumption Capital Asset Pricing Model (CCAPM), let Ct denote the consumption
level at time t, ct ≡ Ct/Ct−1 the consumption growth. The marginal utility of consumption at time t
is given by MUt = C

−γ0
t f0(ct), where γ0 > 0 is the discount factor, f0 : C → R is the nonparametric

structural demand function, which is an unknown positive function of our interest and is defined

on C, the space of consumption growth. The CCAPM model captures the behavior of f0 through
the following equation:

Ect+1|ct
[
r̃t+1 · f0(ct+1) − f0(ct)

∣∣ ct] = 0, (7)

where the modified return can be further expressed as r̃t+1 = δ0 · rt+1 · c−γ0
t+1 , δ0 ∈ (0, 1] is the

rate of time preference. (7) is a special case of the functional conditional moment equation.

We can identify the exogenous variable Z with ct, the consumption growth at the current time
t, and the endogenous variable X with ct+1, the consumption growth at the next time t + 1.
Φ(X,Z; f ) = r̃t+1 · f (X) − f (Z).

Neural SGDA and Mean-field Limit

We parameterize both f and g with neural networks with width N and parameters θ =
(θ1, θ2, . . . , θN ) ∈ RD×N and ω = (ω1, ω2, . . . , ωN ) ∈ RD×N

f (·; θ) = α

N

N∑
i=1

φ(·; θi), g(·; ω) = α

N

N∑
i=1

ψ(·;ωi). (8)

The discrete-time finite width SGDA is,

GD θik+1 = θik − ηαε · g(zk; ωk) · ∇θΦ(xk, zk;φ(·, θik)) − ηλε · δΨ(xk, zk; f (·,θk))
δf

· ∇θφ(xk; θik),

GA ωik+1 = ωik + ηαε · Φ(xk, zk; f (·,θk)) · ∇ωψ(zk;ωik) − ηαε · g(zk; ωk) · ∇ωψ(zk;ωik), (9)

Mean-field Limit Passing the network to infinite width limit N → +∞ and timestep scale ε → 0,

function f and g becomes infinite width neural network,

f (·;µ) = α

∫
φ(·; θ)µ(dθ), g(·; ν) = α

∫
ψ(·;ω)ν(dω). (10)

where µ(θ) and ν(ω) follows the gradient flow,

∂tµt(θ) = −η · divθ
(
µt(θ)vf (θ;µt, νt)

)
, ∂tνt(ω) = −η · divω

(
νt(ω)vg(ω;µt, νt)

)
, (11)

and the vector field is given by

vf (θ;µ, ν) = αED
[
−g(Z; ν) ·

〈δΦ(X,Z; f (·;µ))
δf

,∇θφ(·; θ)
〉
L2 − λ ·

〈δΨ(X,Z; f (·;µ))
δf

,∇θφ(·; θ)
〉
L2

]
,

vg(ω;µ, ν) = αED
[
Φ(X,Z; f (·, µ)) · ∇ωψ(Z;ω) − g(Z; ν) · ∇ωψ(Z;ω)

]
.

Convergence of SGDA to Mean-field Limit

We show that the empirical distribution of the parameters µ̂k and ν̂k weakly converges to the
mean-field limit in (11) as the width N goes to infinity and the stepsize scale ε goes to zero. Let
ρt(θ, ω) = µt(θ)⊗νt(ω), where (µt, νt) is the PDE solution to the continuous deterministic dynamics
in (11) and ρ̂k = N−1 ·

∑N
i=1 δθik

· δωik
corresponds to the empirical distribution of (θk,ωk).

Let {ρt}t≥0 be solution to (11) with ρ0 = N (0, ID) ⊗ N (0, ID), {ρ̂k}k≥0 be solution to (9) with
ρ̂0 = N (0, ID) ⊗ N (0, ID). Under mild assumptions, ρ̂bt/εc converges weakly to ρt as ε → 0+ and

N → ∞. It holds for any Lipschitz continuous, bounded function F : RD × RD → R that

lim
ε→0+,N→∞

∫
F (θ, ω)dρ̂bt/εc(θ, ω) =

∫
F (θ, ω)dρt(θ, ω).

Proof based on propagation of chaos type of arguments (Mei et al., 2018; Zhang et al., 2020)

Global Optimality and Convergence of the Mean-Field Limit

We first characterize (µ∗, ν∗) the stationary point of the Wasserstein gradient flow. Turns out that
under mild assumptions,

(i) The corresponding function (f (·;µ∗), g(·; ν∗)) is the saddle point of the objective function
L(f, g) defined in (5).

(ii) There exists a stationary distribution pair (µ∗, ν∗) and constant D̄ > 0 such that
W2(µ0, µ

∗) ≤ α−1D̄, W2(ν0, ν
∗) ≤ α−1D̄.

This result demonstrates that the stationary point of theWasserstein gradient flow in (11) achieves

global optimality as a solution to the minimax objective (5). It allows us to bypass the hardness

of solving the nonconvex-nonconcave optimization problem (5) of finding saddle points in the

space of neural network parameters (θ,ω) by searching for a stationary point of the Wasserstein
gradient flow instead.

The following result characterizes the global convergence of the Wasserstein gradient flow. Let

(µt, νt) be the solution to the Wasserstein gradient flow (11) at time t with η = α−2 and initial
condition µ0 = ν0 = N (0, ID), (f∗, g∗) the saddle point of the minimax objective L(f, g) in (5).
Under mild assumptions, it holds that

inf
t∈[0,T ]

ED
[
λΨ

(
X,Z; f (·;µt) − f∗(·)

)
+
(
g(Z; νt) − g∗(Z)

)2
]

≤ O(T−1 + α−1). (12)

The main takeaway from the results:

Optimality gap between time t solution and optimal solution decays to zero at a sublinear rate
up to an error of order O(α−1)
SGDA induces a data-dependent representation that is significantly different from the

initialization, with a richer representation than the NTK regime if α = O(1) instead of O(
√
N).
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